RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. FOURTH SEMESTER EXAMINATION, MAY 2019

SECOND YEAR (BATCH 2017-20)

MATH FOR INDUSTRIAL CHEMISTRY (General)

Date : 28/05/2019 Time : 11.00 am - 2.00 pm

Paper : IV

Full Marks : 75

 $[4\times 5]$

3

[Use a separate Answer Book for <u>each group</u>]

<u>Group-A</u>

Answer any four questions from questions nos. 1 to 6:

- 1. a) Test for convergence : $\int_{1}^{\infty} \frac{x \, dx}{(1+x)^3}$.
 - b) Evaluate : $\int_{-\infty}^{\infty} \frac{dx}{1+x^2}$ 2
- 2. a) Test the convergence : $\int_{1}^{\infty} \frac{\sin^2 x}{x^2} dx$.

b) Evaluate :
$$\int_{0}^{\frac{\pi}{2}} \cos^{4} x \, dx$$
 . 2

- 3. Show that the area bounded by $y^2 = 4ax$ and $x^2 = 4ay$ is $\frac{16a^2}{3}$
- 4. Find $\iint_{R} (x^2 + 2xy) dx dy$ where *R* is region bounded by the curves y = x and $y = x^2$.
- 5. Find the area of the surface of revolution generated by revolving the arc of the parabola $x^2 = 4ay$ bounded by the latus rectum about the y-axis.
- 6. Find the volume of the solid generated by revolving the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ about the y-axis.

Answer any two questions from questions nos. 7 to 10

- 7. a) Show that $\vec{\nabla} \cdot \vec{\nabla} f = 40$ at (1,1,1), where $f = 2x^3y^2z^4$.
 - b) If \vec{a} be a constant vector, prove that $\operatorname{curl}(\vec{a} \cdot \vec{r})\vec{a} = \vec{0}$.
- 8. Evaluate $\int_{C} \vec{F} \cdot \vec{dr}$ where $\vec{F} = 3x^2y\hat{i} + (2y+1)\hat{j}$ and C is the curve joining (0,0) and (1,1) along $y=x^2$.
- 9. Verify Green's theorem for $\vec{F} = x^2\hat{i} + xy\hat{j}$, where R is the region bounded by $x^2 + \frac{y^2}{4} = 1$.

2

3

 $[2\times 5]$

10. Use divergence theorem to evaluate $\iint_{S} (x^{3} dy dz + x^{2}y dz dx + x^{2}z dx dy)$, where S is the closed surface consisting of the cylinder $x^{2} + y^{2} = 4$ ($0 \le z \le 3$) and the circular disc z = 0 and z = 3 ($x^{2} + y^{2} \le 4$). 5

<u>Group-B</u>

Answer any four questions from question nos. 11 to 16:

- 11. Solve: $\frac{d^2y}{dx^2} 5\frac{dy}{dx} + 6y = 0$.
- 12. Solve: $(D^2 1)y = e^{2x}$, where $D \equiv \frac{d}{dx}$.
- 13. Show that the differential equation $x^2 \frac{d^2 y}{dx^2} + 6x \frac{dy}{dx} + 8y = 0$ may be reduced to a linear differential equation by the substitution $x = e^t$.
- 14. Consider the partial differential equation, $2u_{xx} u_{xy} + 3u_{yy} + u_x + 2 = 0$.

i) Is it linear? Justify.

ii) Is it parabolic ? Justify.

- 15. The temperature T(x,t) in a stationary medium , $n \ge 0$ is governed by the heat conduction equation $\frac{\partial T}{\partial t} = \frac{\partial^2 T}{\partial x^2}$ Making the change of the variable $(x,t) \rightarrow (u,t)$, where $u = \frac{x}{2\sqrt{t}}$. Show that $4t \frac{\partial T}{\partial t} = \frac{\partial^2 T}{\partial u^2} + 2u \frac{\partial T}{\partial u}$.
- 16. Consider the Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$, $y > 0, -\infty < x < \infty$ $\frac{\partial u}{\partial y}(x, 0) u(x, 0) \oplus f(x)$, where $f(x) \in C_0^{\infty}(\mathbb{R}^1)$. Find a bounded solution u(x,y) and show that $u(x,y) \to 0$ where $|x| + y \to \infty$.

Group-C

Answer any five questions from question nos. 17 to 24 :

- 17. Define absolute and relative errors in Numerical Analysis. An approximate value of π is given by 3.1428571 and its true value is 3.1415926. Find the absolute and relative errors. [2+3]
- 18. Using the properties of the shift operator E and backward difference operator ∇ , prove that $\nabla \equiv 1 E^{-1}$ and $E \equiv e^{hD}$, where h>0 and $Dy(x) = \frac{d}{dx}y(x)$. [3+2]
- 19. Find the root of the polynomial $f(x) = x^3 + x 1$, correct upto 5 decimal places, taking x=0.8 as a initial guess.

(3+2)

[5×5]

[4×5]

- 20. Find the root of $f(x) = x^3 x 1$ inside (1,2), correct upto 3 decimal places using Bisection method.
- 21. Find Lagrange's interpolation polynomial of degree 2 by using the following table of values . Hence determine the value of y at x=2.7

x	2.0	2.5	3.0
f(x)	0.69315	0.91629	1.09861

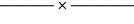
22. Using the following table of values of x and y, calculate the values of y at x=0.40, correct to 4 decimal places.

Х	0.10	0.15	0.20	0.25	0.30
У	0.1003	0.1511	0.2027	0.2553	0.3093

23. Using trapezoidal rule and the following table of values, calculate the values of $\int_0^1 y dx$, correct to 3 decimal places.

Х	0	0.5	1.0
У	0	1.0	0.0

24. Evaluate $\int_0^1 \frac{1}{1+x^2} dx$, using Simpson $\frac{1}{3}$ rule, correct upto 4 decimal places and taking 6 regular partition.



[3+2]